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Abstract. We report quantum mechanical studies of an entity of importance in the dynamics 
of the rotational polaron which wises in nondinear physics. The rotational polwon consists of 
a panicle such as an electron or exciton in menction with an OSCillstor subject to B sinusoidal 
polential which binds ir to a ring. Our investigation focuses on the oscillator. Energy ei~envalues 
and eigrnfuncrions are computed and related to those for B h a r m m c  oscillator. The timc 
evolutiun under the action of a perturbing potential is also examined. 

1. Introduction 

In  the study of non-linear excitations in condensed matter systems [1-6], an entity called 
the rotational polaron has been introduced recently [S. 61. It is a rotational counterpart 
of the ordinary polaron and has been shown [5 ,6]  to exhibit curious features such as 
saturation of self-trapping with increasing non-linearity, multiple stationary states, and 
the counterintuitive disappearance of symmetry breaking on increasing non-linearity. A 
rotational polaron consists of a quantum mechanical particle interacting with a rotational 
oscillator. In the semiclassical approximation wherein the oscillator is treated classically, it 
obeys the following equations of motion: 

iht, = ~,,,c, + E(e,)c,,, (I.la) 

t i ,  + n2f(s,) + RE'(B,)IC,I* = o (1.16) 

where c, and 0, are the amplitude of the particle and the rotational coordinate of the 
oscillator at the mth site respectively, V,,,, is the intersite matrix element describing transfer 
of the particle, and and R arc measures of the restoring force and the moment of inertia 
of the rotator, respectively. Equations (1.1) are generalizations of equations in which the 
functions f and E are assumed linear in S,,,. Among the several choices that have been 
studied [S,6] ,  the simplest non-trivial one is 

f(6d = (1/A)sin(A%) ( I  .2a) 

E(&) = (Eo/A)sin(M,) ( 1  2 6 )  

with the limit of A + 0 giving the standard non-linear Schrodinger equation [1,31 

ihc", = V,,,,c, + EoH,c, ( 1 . 3 ~ )  

a,,, + n2e,, + ~ ~ ~ l ~ , l ~  = 0. ( I  .3b) 
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Existing results o n  the rotational polaron are bascd on a classical description of the 
oscillator part o i  the Hamiltonian describing the rotational polaron. It is ohviously of 
interest to gencralize the description of the oscillator to include quantum mechanics. As 
an initial attempt at this problem, we study in this paper the quantum mechanics of the 
oscillator part alone, without paying attention to the moving particle. Such systems are 
U T  interest also in the prohlem of liquid crystals [7]. We concentrate here on a single 
uscillntor consistin8 CA’ a quantum mechanical particle constrained ti1 move in a ring bound 
hy a sinusoidal potential. In scction 2, we present the equation of motion, indicate its 
relation to that oheyed hy a harmonic oscillator, and provide expressions which clarify the 
relation, both in the context u i  thc energy spectrum and the eigenfunctions. In section 3, 
we investigate the time evolution o i  thc system under the action of a perturbation and study 
transitims analogous to tiilnsitions between the numher states of the harmonic oscillator 
when a linear displacement i s  addcd to it. In section 4, wc prcscnt concluding reinirks. 

2. Energy eigenvalues and eigenfunctions 

We consider a particle cunstrained to move on a ring of length L and bound to a point on 
the r ins  hy a potential which is similar tn a harmonic oscillator potential, and thus write 
the equation lor the wavefunction li. (11 the particle as 

Here the particle lias mass m and energy E .  In the limit nf large L, equation (2.1) reduces 
to the Schrtjdingcr equation Ibr a harmonic oscillator cif irequency U. Equation (2.1) can 
he written in thc standard Mathicu fmm [XI, 

where 

(2.3) 

11 is generally known that there cxist sets of values 0 1  h for which the solutions of (2.2) are 
periodic with period n n  where n is ;In integer [X-1 I ] .  Since the physics of our problem 
demands solutions oS(2.1) which arc pcriodic in x-space with period L, we restrict ourselves 
to those Mathicu function solutions of (2.2) which are periodic in @-space with period n. 
I t  is clear thac, as the length L of thc ring approaches infinity, the sinusoidal potential tends 
to the harmonic oscillator potcntial, and (2. I )  reduces to the familiar Schrodinger equation 
for the harmonic uci l la tor .  The spcctrum of the latter is of  cuurse equidistant: 

& ; ; = ( n + ; ) h U  n = O , I .  . . . .  (2.4) 

It is of interest to ohtain the general spectrum represented by (2.1) i n  the limit of large L. 
As a meaningiul dimensionless paramctcr to he used in the required expansions, wc select 

6 s- ’ / *  = (h/mw)(z/L)* 3 n*(A/L)’. (2 .5)  
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E n e r g y  

Figure 1. Comparison between the asymptotic 
spectrum (2.6, 2.7) and the harmonic oscillator spectrum 
(2.4). The energies are in units of hw. The Mathieu 
spectrum is marked by the solid line and the d a h r d  
line denotes the hmmonic oscillator spectrum. Note that 
the ground state energies for the asymptotic Mathieu 
Hamiltonian and the harmonic oscillatoc are practically 
the same and therefore a single d a h e d  line has been 
used to show Ihe coincidence of the two lines. 

. -. - - - - - - - - - - - - - -. 

Except for the multiplying factor 7r2 the parameter [ is thc square of the ratio of two 
characteristic lengths of the system. The first is A = which is the amplitude 
of the corresponding classical harmonic oscillator with a single quantum of the quantum 
mechanical oscillator. The second is the periodic length L of the ring. Following the 
method of [81, we can now write from (2.1) the energy eigenvalues as represented by 

We find the first few terms G in the expansion (2.6) to be 

80(n + f)4 + 136(n + 1,' + 9 
2'0 

G; = 

Figure I shows the harmonic oscillator limit of the spectrum along with the comections 
we have obtained. One notices that the Mathieu spectrum starts out approximately 
equidistant like the harmonic oscillator spectrum but the higher energy levels become more 
closely spaced. It appears that the dominant correction to the oscillator potential coming 
from the Mathieu cosine potential is proportional to -x4, and tends to flatten the harmonic 
oscillator potential and thus make the energy levels more closely spaced. 



10300 S Raghavan and V M Kenkre 

We now address the eigenfunctions through our comparative analysis. The 
eigenfunctions fall into two categories: even and odd. In terms of an expansion in powers 
of 6 (2 .5)  these eigenfunctions are 

where 

yo = Hn ("1 

Hn+4 Hn+2 n(n - I)Hn-2 n(n - I)(n - 2)(n - 3)Hn-4 
$1 = -- - __ - 

y:n) = - 

16 4 4 16 

Hn+s Hn+6 (n  + 2)Hn+4 (n2 - 25n + I6)Hn+2 
512 64 64 

+ 

i 16 +-- 
(2.9) n(n - I ) ( - n 2  - 27n + 10)Hn-2 

64 
n(n - I ) ( n  - 2 ) ( n  - 3 ) ( n  - 4)(n - 5 ) H n 4  

64 
n(n - I ) ( n  - 2 ) ( n  - 3)(n - 4)(n - 5 ) ( n  - 6)(n - 7)H,-x 

512 

n(n - I)'(n - 2)(n - 3)H._4 
I6 + 

- 

+ 

where the H,, having the dimensionless length ?j = &x/h as their argument are the 
Hermite functions, which are the eigenfunctions for the harmonic oscillator, and C in the 
RHS of (2.8) is a normalization constant. The above expansion can be shown [SI to be 
good only for the first excited states, i.e. those whose spatial extent compared to h is much 
smaller than the ratio of the characteristic lengths Llh.  In the limit of large L / h  we thus 
see that we obtain the harmonic oscillator wavefunctions as the first term in the asymptotic 
expansion (2.8, 2.9). The ground state and first excited wavefunctions are given by 

Figure 2(a) shows the actual harmonic oscillator wavefunctions for the ground and first 
excited states as well as the first-order corrections due to finite Llh.  Specifically, L / h  
has been taken to be equal to 15. For comparison, we show in figure 2(h) the actual 
oscillator wavefunctions alongside the Mathieu wavefunctions when L / h  << 10 so that 
one is far away from the harmonic oscillator limit. In particular s has been taken to be 
equal to 5 i.e. L / h  = 4.698. One thus finds that in the harmonic oscillator limit, the close 
similarity between the first few eigenfunctions of the Mathieu Hamiltonian and the harmonic 
oscillator wavefunctions parallels the similar nature of the first few energy lines displayed in 
figure 1. However from figure 2(b) one notices that especially for the first excited states, the 
departure of the Mathieu eigenfunctions from the exact harmonic oscillator wavefunctions 
is quite enormous. 
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0 

-3 -2 - 1  0 
r / l a m b d a  

Figure 2. (a) Companson hetween the asymptotic Mathieu wavefunctions and the harmonic 
oscillator wavefunctions for the ground and fint excited states. LjA has been taken to be equal 
to IS. The solid line shows the ground state Mathieu wavefunction und the line marked by hold 
dots gives the corresponding harmonic oscillator wavefunction. whereas the line with fine dots 
and the line with dashes mark the first excited State wavefunctions of the asymptotic Mathieu 
and the harmonic oxillator Hamiltonians respectively. (b) Companson between the Mathieu 
wavefunctions and the harmonic oscillator wavefunctions for the ground and first excited states. 
,v has been takcn to he equal to five, i.e. L/A = 4.698. The solid line shows the ground State 
Mathieu wavefunction, the line marked by bold dots gives the corresponding harmonic oscillator 
wavefunction. and the line marked by fine dots and the dashed line denote the fint excited states 
of the Mathieu and harmonic oscillator Hamiltonians respectively. 
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3. Perturbations 

We now present some calculations relevant to the situation in which a perturbation is added 
to the sinusoidal potential. This is analogous to applying a Hamiltonian perturbation linear 
in the displacement to the harmonic oscillator potential. Using a generalization of such an 
addition given earlier 1121 in anharmonic contexts, the equation of motion can be obtained 
as 

S Rughuvun und V M Kenkre 

which can be written as 

I -cos 2n(x  - A )  ) $ = E $  
L 

h2 d2$ mG2L2 
2m dx2 + 7 __ (3.2) 

where the shift along the ring is A and the magnitude of the potential shift is such that in 
the harmonic oscillator limit, the strength of the shift is VI ,  and 

2 n  v, 
tan (7) = ~ 

mw2L 

1/4 

G = w [ I  + g] 
The Mathieu equation for the shifted potential then is of the form 

where 

(3.3) 

and can he solved immediately by comparison to (2.2)-(2.4). 
We can consider the Mathieu equations (2.2, 3.4) as eigenvalue problems with the 

solutions, C e ( s ,  @), S d s ,  6) and Ce(.?, 6 - @o), Se(S, @ - @d respectively, being looked - 
upon as their eigenfunctions with respective eigenvalues s J 2  - be, s / 2  - bo and SJ2  - he, 

Lct Ho and @.(s, @) denote the Hamiltonian and the wavefunctions corresponding 
to equations (2.1) and (2.2) and let H and $ " ( S , @  - &) label the Hamiltonian and 
wavefunctions corresponding to equations (3.1) and (3.2). Then if the system is placed 
initially in some eigenstate of the original Hamiltonian, @", the wavefunction will evolve 
under the action of the Hamiltonian H 

s J 2  - b. 

@(i, @, t )  = e-'"'/'@(.r. @) (3.6) 

equivalently expressed as 
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where the overlap integral is 

2n 

f m n  =l d $ ~ ; ( ~ 3 q 5 - 4 ~ ) $ n h $ )  (3.8) 

and the eigenstates have been normalized according to 

(3.9) 

The probability that the system will be found at time t in an eigenstate $fl of the original 
Hamiltonian is given by 

(3.10) 

The eigenstate s) can be written as an infinite sum of cosines or sines according to 
whether the eigenstate is even or odd. We can then write the following expressions for the 
overlap integral fmn:  

(i) m even, n even: fmn = A$’(s)i$‘)(S)cos2kq50 (3.1 1)  
k 

(ii) m odd, n even: f,,, = - A;)(s)bg)(S) sin 2kq50 (3.12) 
k 

(iii) m even, n odd: fmn = - 

(iv) m odd, n odd: f m n  = 

E$)(s)i$‘)(?) 
k 

B~Z’(s)~l;f’(?)cos2k~0. 
k 

(3.13) 

(3.14) 

Figures 3(a) and (b) shows the self-propagators and transition probabilities for s = 5 and 
q50 = 0.3. One sees that the ground state propagator exhibits ringing much like what 
one would see in a non-degenerate two-state system. The behaviour exhibited by the 
self-propagators for the first and second exicted states has, on the other hand, far more 
structure. This suggests that these states are connected to the rest of the manifold in a 
more complicated way than the ground state. This may be for the following reason. In 
the case of the harmonic oscillator the behaviour of the ground state under the action of a 
linear perturbation is qualitatively different from the excited states because the ground state 
is a coherent state. In the present rotational case, a similar thing could be occurring. The 
ground state could be acting as a ‘coherent state’ for this problem, making its behaviour 
completely different from that of the other states both in the case of the propagators and 
the transition probabilities. The probability of transition from the ground to the first excited 
states is similar to the behaviour one could expect between the states of a non-degenerate 
two-state system, but the behaviour of the probability of transition from the first to second 
excited states is very different. 

In figure 4 we display the same quantities as in figure 3 but here we take the Mathieu 
Hamiltonian to be in the harmonic oscillator limit and compare it with the exact oscillator 
Hamiltonian. We find that the different probabilities approach the behaviour of the harmonic 
oscillator. 
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1 
8 1  

0 . 0 0  ,_ss 3.12 4.97 6 . 5 1  B . 2 9  *.os 
s t  

0 . 0 0  I . = =  3.JZ 4.97 6 . 6 ,  8 . 2 9  9.95  
u t  

Figure 3. (a) Self propagators for the Mathieu Hamiltonian when LJA << IO. In pwicular, 
s and 4, given in (3.5) are taken to be five and 0.3 respectively. The solid line gives the 
self-propagator for thc ground state. whereas the dotted line and line mar!& with bold dots give 
the propagators for the first and second excited sntes respectively. (b) Transition probabilities 
for Ole same wse. The solid line marks the transition probability between the ground and first 
excited scales and the dotted line denotes the observable between the first and second excited 
states. 
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0 
h 
i 

i 
D 

d l  I 1 I I I I 
0.00 1 . 6 7  3.33 5 . 0 0  6 . 6 7  8.33 10.00 

w t  

--__ 

0 . 0 0  1.67 3.33 5 . 0 0  6 . 8 7  8.33 10.00 
w t  

Figure 4. (a) Compdson of the self-propagaton for the first three states between the Mathieu 
functions in the h m o n i c  oscillator limit nnd the actual harmonic oscillator staes. The solid 
line. Ihe line marked by do& and dashes and the line with fine do& denote the propilgators for 
the ground. fint and excited states of the asymptotic Mathieu Hamiltonian respectively whereas 
the lines marked by circles, bold dots and light. fine dots denote the Corresponding quantities for 
the harmonic oscillator. (b) Comparison of the lransition probabilities between the States of the 
Mathieu problem in rhe harmonic oscillator limit and the exact harmonic oscillator problem. The 
bold dots and dotted line denote the m i t i o n  probabilities between the ground and fint excited 
states and between the first and second excited states of the asymptotic Mathieu Hamiltoninn 
respectively whereas the line marked by circles and the dashed line denote the corresponding 
quantities for the harmonic oscillator Hamiltonian. 
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4. Concluding remarks 

We have analysed the problem of a single oscillator bound by a sinusoidal potential on 
a ring and have explored its relation to the problem of a quantum mechanical harmonic 
oscillator. We have shown that the Mathieu Hamiltonian approaches its harmonic oscillator 
limit smoothly in the behaviour of the spectrum, the shape of the wavefunctions and 
the evolution of transitions between the states of the Hamiltonian on application of a 
perturbation. With this as a starting point, work on incorporating an interaction of a 
quantum mechanical excitation with the oscillator studied here is currently under way with 
applications to rotational polarons and liquid crystals. A few comments concerning the 
physical significance of the system might be relevant. Liquid crystals consist of partially 
ordered aggregates of molecules possessing directed shapes such as rods or discs [7]. A 
rod-like molecule can perform oscillations around its equilibrium direction. If an electronic 
excitation or an electron interacts strongly with this oscillation such that the presence of the 
excitation or charge affects the equilibrium direction of the molecule. the composite system 
is a rotational polaron. 

The transport of the excitation or charge will be significantly affected [5 ]  as a result of 
the strong attraction. Because the oscillation coordinate possesses a limited range (since it  
is an angle rather than a translational coordinate) novel physical effects such as saturation of 
non-linearity can occur. The present paper constitutes a beginning step in a fully quantum 
mechanical study of such phenomena. 

S Raghavan and V M Kenkre 
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